Gliding arc discharge used for water activation: the production mechanism of aqueous NO and its role in sterilization

Author:

Zhu MengyingORCID,Wang ZifengORCID,Chen Jinkun,Liu Linbo,Xi Wang,Zhang Fugao,Guo LiORCID,Liu DingxinORCID,Rong Mingzhe

Abstract

Abstract Gliding arc is a promising plasma technology for water activation due to its high energy efficiency for producing reactive nitrogen species (RNS), which is believed as the key agent for the sustained bactericidal effect of plasma-activated water (PAW). Nitric oxide (NO) is the major product of gliding arc and also widely exists in PAW, but the production mechanism of aqueous NO and its role in sterilization have been little investigated before. In this paper, NO-rich plasma effluent gas is produced by gliding arc discharge and introduced into water to produce PAW. The concentrations of gaseous and aqueous reactive species are detected, which decrease with the increasing air flowrate of the gliding arc. To clarify the contribution of plasma-induced RNS on water activation, the NO + air mixed gas is used to simulate the plasma effluent gas, and the results show that the two gases have similar gaseous composition and aqueous NO yield. Compared with the NO + Ar mixed gas with the same NO proportion, the NO + air mixed gas produces much more aqueous NO, implying that the presence of O2 significantly enhances the production of aqueous NO. The sterilization experiments demonstrate the key role of aqueous NO in sterilization, but an acidic environment is necessary for aqueous NO to achieve a potent bactericidal effect.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3