All-optical logic gates based on topological edge and corner states in two-dimensional photonic crystals with square dielectric columns

Author:

Gao Yong-FengORCID,Zhou Shu-Yang,Li Yue,Pan Ji-Ning,He Yue,Yang Ming,Sun Ming-Yang

Abstract

Abstract Recently, with the rapid progress in all-optical networks and optical computing, there is an increasing requirement for more appropriate methods to design all-optical logic gates. Photonic crystals (PCs) can be serving as a versatile platform for manipulating light propagation. The realization of topological edge states (TESs) and topological corner states (TCSs) within high-order topological photonic insulators has attracted extensive attention. In this paper, TESs and TCSs are achieved using honeycomb PCs with square dielectric columns instead of conventional cylindrical ones for obtaining a larger photonic energy band gap due to reduction of dielectric column symmetry. TESs with overlapping frequencies can be attained by different arrangements of combining two PCs with distinct topological properties. A sandwich structure comprising both topologically trivial and non-trivial PCs is proposed, and ‘AND Gate’ and ‘OR Gate’ logic gates are implemented through the coupling between edge state waveguides when controlling the number of coupling layers. Additionally, a triangular-shaped box structure composed of non-trivial PCs enveloped by trivial PCs is constructed. Within this structure, TCSs manifest only around each acute angle, and a ‘NOT Gate’ logic gate is realized through corner state coupling and edge state coupling. This work paves a new way of designing high-performance micro–nano all-optical logic gate devices.

Funder

Practice and Innovation Training Project of College Students of Jiangsu University, China

Research Project of College Students of Jiangsu University, China

Practice Innovation Program of Jiangsu Province, China

State Key Laboratory of Advanced Optical Communication Systems and Networks of Shanghai Jiao Tong University, China

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3