Interband carrier recombination mechanism in Al-doped ZnO

Author:

Chen ConglongORCID,Yu Junxiao,Lv Zefang,Zhang Fengling,Wang Kuidong,Li Runze,Chen Jie

Abstract

Abstract Due to strong nonlinear optical effects and ultrafast response properties, transparent conductive oxides are promising candidate materials for next-generation THz modulation devices and other photonic applications. However, the mechanisms of photon-induced ultrafast carrier relaxations in those materials have yet to be fully understood. Here we investigated the interband carrier dynamics in a prototype of this family, Al-doped ZnO, with different excitation photon energies through femtosecond optical transmittance measurements. We found that the interband relaxation of the photon-induced carriers is mainly through second-order recombination, which is essentially the direct band-to-band recombination with the assistance of intraband electron relaxation. The high density of the doped electrons provides superior intraband relaxation channels through electron-phonon interaction and electron-impurity scattering, which contribute to the overall ultrafast response, especially under indirect and band tail transitions. This study provides a new insight into the ultrafast response mechanism of Al-doped ZnO and the analyzing method may also be generalized to other heavily doped semiconductors.

Funder

National Natural Science Foundation of China

Shanghai Rising-Star Program

Science and Technology Commission of Shanghai Municipality

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3