Long-lived species in plasma-activated water generated by an AC multi-needle-to-water discharge: effects of gas flow on chemical reactions

Author:

Liu KunORCID,Ren Wei,Ran Congfu,Zhou Rusen,Tang Weibin,Zhou RenwuORCID,Yang Zhihao,Ostrikov Kostya (Ken)

Abstract

Abstract Plasma-activated water (PAW) represents a promising green antibacterial agent for biomedical and agricultural applications. In this study, a novel AC multi-needle-to-water discharge device was developed to investigate the effects of gas flow on the generation and chemical composition of PAW. It is shown that the concentrations of NO 3 and N(III) ( NO 2 and HN O 2 ) in the PAW both increased with an extension of the plasma-processing time and a reduction of the gas-flow rate. The absorption of gas-phase products carried by the gas flow from the discharge chamber was found to be beneficial for the generation of both NO 3 and N(III) in the PAW at a gas flow rate of 20–60 L h−1, yet their concentrations were still lower than those without any feeding gas. As opposed to NO 3 or N(III), the H 2 O 2 concentration in the plasma-activated phosphate buffer solution (PAPBS) increased under stronger gas flows and was almost unaffected by absorption in PAPBS. The pH value of PAW increased at higher gas flow rates. A comparison of the N(III) in PAW and PAPBS reflects the effects of the reactions of NO 2 and H 2 O 2 in the two different working liquids. To quantify the effects of gas flow on the discharge characteristics, gas temperatures were calculated from the optical emission spectra and were proven to be flow-independent near the discharge channel. Fourier transform infrared (FTIR) measurements of the gaseous products during the discharge, and further analysis of possible reaction pathways indicated that by controlling the gas flow in the multi-needle-to-water discharge system, the concentration of long-lived species in PAW could be tuned, which might favor the generation of ONOOH . These findings contribute to a better understanding of effective electric discharge-related mechanisms for enhancing the biochemical and chemical activities of PAW.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Chongqing

Xingtai Science and technology projects

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3