V2O5 nanoflakes for broad-spectral-response self-powered photodetectors with a high on/off ratio and high detectivity

Author:

Şakar Betül Ceviz,Yıldırım Fatma,Aydoğan ŞakirORCID

Abstract

Abstract In this study, V2O5 nanoflakes (NFs) was coated on Si substrate by DC sputtering to obtain V2O5 NFs/n-Si heterojunction. To utilize V2O5 NFs as a broadband photodetector, absorbance spectra were studied using UV−Vis−near-IR spectroscopy. Cut-off wavelength was 530 nm. Furthermore, energy dispersive x-ray, x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS) and scanning electron microscope analyses of V2O5 NFs were achieved. The V2O5 NFs/n-Si device gave a very high rectifying ratio of 1.18 × 104 in the dark and at zero bias, it has self-powered mode and an on/off ratio of 1.29 × 106. Optical analyses of the V2O5 NFs/n-Si heterojunction device were studied in detail under UV (365, 395 nm) and IR (850 nm) illumination as well as visible light with varying light intensities. Analysis of experimental studies showed that the device has a high photoresponse under all illuminations. For optical analysis based on IV measurements, responsivity, detectivity, on/off ratio, external quantum efficiency (EQE), normalized photocurrent-dark-current ratio and noise-equivalent power (NEP) analyses were achieved. The maximum values of responsivity from measurements under visible, UV (395 nm) and IR illumination (850 nm) were 104, 882 and 850 mA W−1 for −2.0 V, respectively. Detectivity values are maximized at V = 0 V and are 6.84 × 1011, 7.87 × 1012 and 6.87 × 1012Jones for the same illuminations respectively. With increasing intensity, the rectification ratio and NEP decreased while the other parameters generally increased. The increase in performance at increasing visible intensity was attributed to the increase in photogenerated carrier density at high intensities, and the high performance in the UV region was attributed to the high light absorption of V2O5 NFs in the UV region.

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3