Vibrational CARS measurements in a near-atmospheric pressure plasma jet in nitrogen: I. Measurement procedure and results

Author:

Kuhfeld JORCID,Lepikhin N DORCID,Luggenhölscher D,Czarnetzki UORCID

Abstract

Abstract The non-equilibrium ro-vibrational distribution functions of molecules in a plasma can heavily influence the discharge operation and the plasma-chemistry. A convenient method for measuring the distribution function is coherent anti-Stokes Raman scattering (CARS). CARS spectra are measured in a ns-pulsed plasma between two parallel, 1 mm spaced molybdenum electrodes in nitrogen at 200 mbar with pulse durations of 200 ns/250 ns and a repetition rate of 1 kHz. The CARS spectra are analyzed by a fitting routine to extract information about the vibrational excitation of the nitrogen molecules in the plasma. It is found that during the discharge the vibrational distribution for v 7 can be described by a vibrational two-temperature distribution function. Additionally, the electric field is measured by the electric field induced second harmonic generation method during the discharge pulse. It is found to be constant in time after the initial ionization wave with values close to 81 Td for the investigated conditions. During the afterglow between two discharge pulses a more general fitting approach is used to obtain the population differences of two neighboring vibrational states. This allows to capture the more complex vibrational dynamics in that time period. The measurement results are discussed in more detail and compared to simple plasma models in a companion paper Kuhfeld et al (2021 J. Phys. D: Appl. Phys. 54 305205).

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Reference63 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3