Abstract
Abstract
Multi-functional microwave metamaterials offer a great solution for active components and modules that are potentially applicable in stealth, energy, and wireless communication systems/devices. However, it is challenging to realize a multi-functional behavior in a cost-effective and simple metamaterial system. This paper proposes and demonstrates a metamaterial inspired by origami building blocks that can be controlled by mechanical stimuli. By mechanically changing folding states, the proposed metamaterial can be switched from an ultra-broadband absorber to a reflector. In the compressed mode, the structure exhibits an absorption of more than 90% in a broad frequency range of 6–16 GHz. The absorption characteristic is insensitive to polarization angles and works with a wide range of incident angles. In the stretched mode, the absorption function is turned off and all the incident waves become reflected. Such origami-inspired metamaterials behave in multiple figures of merit involving bandwidth, frequency of operation, angle of polarization, and incidence.
Funder
National Foundation for Science and Technology Development
Subject
Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献