Simulation of ageing and wear effect on graphene THz passive components using finite element method

Author:

La Mura MonicaORCID,Lamberti PatriziaORCID,Kuzhir PolinaORCID

Abstract

Abstract In the growing scenario of 2D material-based metamaterials and metasurfaces for Terahertz (THz) applications, assessing the impact of ageing and wear due to environmental stressors on the components’ performance is becoming mandatory to understand the long-term reliability of novel technologies. This paper introduces approaches to assess the ageing and wear effects on THz passive components through numerical simulations. For this purpose, common techniques for introducing 2D materials and thin metal layers in numerical models are discussed. As a case study, this work explores the effects of graphene degradation and reflective metal ageing on the electromagnetic response of a graphene-enhanced reflective grating for THz absorption and modulation by finite element (FE) analysis. The developed FE model is validated against experimental data obtained through THz Time-Domain Spectroscopy. By computing the device’s transmission, reflection, and absorption spectra for degrading graphene and metal conductive properties, this work provides insights into the influence of ageing and wear on THz passive components.

Funder

European Union’s Horizon 2020 Research and Innovation programme

Italian National Recovery and Resilience Plan (NRRP) funded by the European Union’s NextGenerationEU programme

Research Council of Finland Flagship Programme PREIN

Publisher

IOP Publishing

Reference48 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3