Polarization-independent resonant lattice Kerker effect in phase-change metasurface

Author:

Xiong Lei,Luo Xiaoqing,Ding Hongwei,Lu YuanfuORCID,Li GuangyuanORCID

Abstract

Abstract Resonant lattice Kerker effect in periodic resonators is one of the most interesting generalizations of the Kerker effect that relates to various fascinating functionalities such as scattering management and Huygens metasurfaces. However, so far this effect has been shown to be sensitive to the incident polarization, restricting its applications. Here, we report, for the first time, polarization-independent resonant lattice Kerker effect in metasurfaces composed of periodic Ge2Se2Te5 (GST) disks. For such a metasurface of square lattice, the spectrally overlap of the electric dipole and magnetic dipole surface lattice resonances can be realized by choosing an appropriate GST crystalline fraction regardless of the incident polarization. The operation wavelength and the required GST crystalline fraction can be conveniently tuned over large ranges since these parameters scale linearly with the disk size and the lattice period, greatly facilitating the design. Making use of the obtained resonant lattice Kerker effect, we realize a reconfigurable and polarization-independent lattice Huygens’ metasurface with a dynamic phase modulation of close to 2π and high transmittance. This work will advance the engineering of the resonant lattice Kerker effect and promote its applications in phase modulation and wavefront control.

Funder

State Key Laboratory of Advanced Optical Communication Systems and Networks, China

Shenzhen Institute of Artificial Intelligence and Robotics for Society

Shenzhen Research Foundation

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3