Magneto-plasmonic scattering by a disk-shaped particle made of an artificial dielectric

Author:

R Tuz VladimirORCID,Evlyukhin Andrey BORCID

Abstract

Abstract The main features of artificial dielectrics are high anisotropy and controllable heterogeneity, as well as adjustable values of their synthesized material parameters. In this work, we numerically study the scattering features of a disk-shaped particle made of an artificial dielectric (finely stratified structure, FSS) that is composed of magnetic and semiconductor constituents influenced by an external static magnetic field. The tensor-valued permittivity and permeability of the FSS are derived involving the effective medium theory. Due to a specific composition of the FSS, the material properties of the disk simultaneously acquire electric and magnetic gyrotropy, which depends on the proportion of the semiconductor and magnetic components included in the FSS. It is supposed that the ferromagnetic and plasma resonances of the constitutive materials are closely spaced. In particular, we examine the electric and magnetic dipole contributions to the scattering and absorption cross-sections obtained in the framework of the multipole decomposition method while accounting for the polarizability and magnetization induced in the particle by the field of incoming radiation. By varying the proportion of components of the artificial dielectric, we demonstrate the magneto-plasmonic functionality of the particle. Our presentation generalizes and complements several known solutions obtained separately for either magnetic or dielectric anisotropic particles. This approach can be used to study magneto-optical effects in metamaterials and metasurfaces composed of an ensemble of gyroelectric and gyromagnetic particles that is important for both plasmonic and photonic applications.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3