Optimizing the magnetic properties of hard and soft materials for producing exchange spring permanent magnets

Author:

Petrecca MicheleORCID,Muzzi BeatriceORCID,Oliveri Stefano Maria,Albino MartinORCID,Yaacoub Nader,Peddis DavideORCID,de Julián Fernández CésarORCID,Innocenti ClaudiaORCID,Sangregorio ClaudioORCID

Abstract

Abstract The exploitation of the exchange coupling between hard and soft magnetic materials has been proposed for enhancing the magnetic performances of rare-earth free permanent magnets, with the aim of extending their use to all applications where moderate energy product (35–100 kJ m−3) is required. Strontium hexaferrite (SFO)/spinel ferrite composites seem particularly promising to achieve this target, although the conditions to maximize the effect while using techniques easily scalable to industrial production have not yet been identified. Within this framework, the optimization of the structural, chemical, and magnetic properties of the two moieties before the coupling procedure is crucial to enhance the energy product of the final composite. Here we report the syntheses of both nanometric SFO with high coercivity (ca. 525 kA m−1) and quasi-bulk saturation magnetization (68 Am2 kg−1) and a series of nanosized zinc-doped ferrite (Zn x Fe3−x O4, 0.0 ⩽ x ⩽ 0.4) through cheap, easily scalable and eco-friendly approaches. The structural and chemical stability of the two magnetic phases as a function of temperature were investigated up to 1100 °C, with the aim of finding the best compromise between preservation of the nanometric scale and magnetic properties. A very high-magnetization (106 Am2 kg−1) ferrite was obtained by annealing Zn0.3Fe2.7O4 nanopowder at the highest investigated temperature. A preliminary attempt at coupling the two phases, starting from a mixture of the nanopowders, was performed through a classic annealing process in the temperature range 500 °C–1100 °C. The adopted procedure allowed for obtaining an exchange coupled composite at 1100 °C where the two phases are intimately and homogeneously mixed, with micrometric (0.3–5 μm) and nanometric (up to 50 nm) spinel ferrite particles. Despite these promising results, no enhancement of the energy product was found, highlighting the need for further experimental efforts to improve the coupling procedure.

Funder

European Commission

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3