Terahertz characterization of graphene conductivity via time-domain reflection spectroscopy on metal-backed dielectric substrates

Author:

Fuscaldo WalterORCID,De Simone SaraORCID,Dimitrov Dimitre,Marinova Vera,Mussi ValentinaORCID,Beccherelli RomeoORCID,Zografopoulos Dimitrios CORCID

Abstract

Abstract A theoretical and experimental framework for the characterization of the terahertz (THz) conductivity of graphene on metal-backed substrates is presented. Analytical equations are derived for the general problem of oblique incidence of the THz beam in a time-domain spectroscopic (TDS) setup working in reflection. The recorded time-domain signals are post-processed in order to retrieve the substrate thickness, its dielectric frequency dispersion, and the complex graphene conductivity frequency dispersion, which is described by a generalized Drude–Smith model. The method is tested on two samples of chemical vapor deposited graphene, transferred on polyethylene terephthalate and cyclo-olefin polymeric substrates of sub-millimetric thickness, and characterized by Raman spectroscopy. By working only with the amplitude spectra, the proposed method circumvents issues stemming from phase uncertainties that typically affect TDS measurements in reflection mode. More important, it allows for a rapid, nondestructive characterization of graphene sheets that can be directly integrated in the production flow of graphene-based passive or active components employing metal-backed resonant cavities, such as THz absorbers, metasurface lenses, or leaky-wave antennas.

Funder

Bulgarian National Science Fund

European Cooperation in Science and Technology

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3