Measurement of medium-voltage AC air arc temperature and particle number density based on dual-wavelength Moiré deflection technology

Author:

Zhou TongORCID,Yang QingORCID,Yuan Tao,He HengxinORCID,Liu Hongwen

Abstract

Abstract AC air arcs are generated in medium-voltage (MV) power systems under the effect of harsh weather conditions, equipment aging, and high penetration of distributed generation, threatening equipment and public safety. The arc current and temperature are low due to the wide application of arc suppression devices. In this scenario, the MV AC air arc does not satisfy the local thermodynamic equilibrium (LTE) condition. In addition, the repeated arcing and extinguishing processes further complicate the arc discharge mechanism, which bring challenges in the modeling and detection of MV AC air arcs. Experimental methods are a direct and efficient approach to determine the properties of arc plasmas. In this study, a dual-wavelength Moiré deflection diagnostic system was established to determine the time evolution of the particle density and radial distribution of the temperature in an MV AC air arc without relying on the LTE assumption. The electron number density and heavy particle number density change transiently during the arc discharge process and change gradient along the radial direction. The heavy particle temperature and electron temperature were then calculated based on the measured particle number density. During the arcing stage, the temperature of the electrons exceeded that of the heavy particles significantly, and the arc deviated from LTE. Finally, the limitations of the traditional single-wavelength Moiré deflection method are analyzed. The classic single-wavelength Moiré deflection method, while capable of estimating heavy particle temperature in plasma, exhibits a significant error in electron density estimation compared to the dual-wavelength Moiré deflection method.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3