Bio-inspired branch structure seismic metamaterial: attenuating low-frequency Rayleigh waves

Author:

Bai YongtaoORCID,Li Xiaolei,Liao Yiwen

Abstract

Abstract This study investigates the transmission characteristics of natural forests with branches and introduces a bio-inspired branch structure seismic metamaterial (SM) designed to create bandgaps for low-frequency Rayleigh waves. Employing the finite element method, we reveal the mechanism behind the generation of these Rayleigh wave bandgaps and their transmission properties. A distinct ‘collectivization mode’ within the bio-inspired branch structure SM is identified, effectively attenuating Rayleigh waves. A collectivization coefficient is introduced for quantitative characterization, and we extend the analysis to multi-layered soil mediums, demonstrating an interface with the metamaterial’s bandgaps. The frequency-domain analysis highlights the difference between using the collectivization mode and traditional methods for attenuating surface waves, offering a novel approach to low-frequency Rayleigh wave reduction with implications in seismology and related engineering fields.

Funder

Fundamental Research Funds for the Central Universities

Excellent Young Scientists Fund Program

Key R&D Program of China

the Institute of Engineering Mechanics, China Earthquake Administration

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Laser shock peening for enhanced fatigue resistance in steel structures: Insights from Q960 steel study;International Journal of Fatigue;2024-10

2. Water-tank metabarrier for seismic Rayleigh wave attenuation;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-08-12

3. Experimental study on fatigue behavior of prefabricated high-strength steel-concrete composite bridge beams;Journal of Constructional Steel Research;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3