Dimensional scaling effects on critical current density and magnetization switching in CoFeB-based magnetic tunnel junction

Author:

Phoomatna R,Sampan-a-pai S,Meo A,Chantrell R W,Chureemart JORCID,Chureemart PORCID

Abstract

Abstract In this work, we theoretically investigate the size dependence of the magnetization reversal behavior in CoFeB-MgO-CoFeB magnetic tunnel junctions (MTJs) by employing an atomistic spin model coupled with the spin accumulation model. The former and the latter are used to construct the magnetic structure and to model the spin transport behavior, respectively. The accuracy of the approach is confirmed by investigating the dependence of the magnetic properties on the size of the MTJ. Perpendicular magnetic anisotropy (PMA) is observed for thickness less than 1.3 nm, which is in an excellent agreement with experiment. To investigate the magnetization dynamics induced by spin-polarized current, a charge current is injected into the MTJ structure perpendicular to the stack leading to a spin-transfer torque acting on the magnetization of the CoFeB layer. The results show that the critical current density to reverse the magnetization is lower for PMA-MTJ and in addition for the same injected current density the time required to switch the magnetization is shorter than for an in-plane MTJ. The results can be used as a guideline to optimize the design of high performance MTJs for STT-MRAM applications.

Funder

Thailand Science Research and Innovation

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3