Abstract
Abstract
The electron dynamics in a stable and non-filamentary Argon plasma jet, generated using AC excitation at kHz frequencies and interacting with a liquid surface either at floating potential or electrically grounded were examined using laser Thomson scattering. In the case of a floating liquid, two discharge events were observed during each half-cycle of the applied sinusoidal voltage. In the grounded liquid case only one discharge event was observed, which occurred during the positive half period. Through spatio-temporal imaging of the discharge, its repetitive breakdown behavior was analyzed and divided into pre-, main-, and post-breakdown phases. The dynamics and presence of the various phases differed depending upon the grounding of the liquid. Thomson scattering measurements revealed maximum electron densities and temperatures of 6.0–6.3 × 1014 cm−3 and 3.1–3.3 eV for the floating liquid case and 1.1 × 1015 cm−3 and 4.3 eV in the grounded liquid case. Electron-driven reactions are the primary source of reactive chemical species in a plasma jet. Therefore, the electrical characteristics of the liquid sample can impact the fundamental physicochemical processes at play in the discharge, ultimately influencing its chemical composition.
Funder
Engineering and Physical Sciences Research Council
Subject
Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献