Methane detection to 1 ppm using machine learning analysis of atmospheric pressure plasma optical emission spectra

Author:

Shah Mansouri TaherehORCID,Wang Hui,Mariotti DavideORCID,Maguire PaulORCID

Abstract

Abstract Optical emission spectroscopy from a small-volume, 5 μl, atmospheric pressure RF-driven helium plasma was used in conjunction with partial least squares-discriminant analysis for the detection of trace concentrations of methane gas. A limit of detection of 1 ppm was obtained and sample concentrations up to 100 ppm CH4 were classified using a nine-category model. A range of algorithm enhancements were investigated including regularization, simple data segmentation and subset selection, feature selection via Variable Importance in Projection and wavelength variable compression in order to address the high dimensionality and collinearity of spectral emission data. These approaches showed the potential for significant reduction in the number of wavelength variables and the spectral resolution/bandwidth. Wavelength variable compression exhibited reliable predictive performance, with accuracy values >97%, under more challenging multi-session train—test scenarios. Simple modelling of plasma electron energy distribution functions highlights the complex cross-sensitivities between the target methane, its dissociation products and atmospheric impurities and their impact on excitation and emission.

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3