Current interruption performance of ultrahigh-pressure nitrogen arc

Author:

Abid FahimORCID,Niayesh Kaveh,Espedal Camilla,Støa-Aanensen Nina

Abstract

Abstract In this paper, the influence of gas filling pressure on the current interruption performance of different switch configurations with electric arcs burning in nitrogen has been experimentally investigated. A synthetic circuit generating a current of 130 A at 190 Hz is used and the initial rate of rise of recovery voltage just after current zero is varied from 9.8 V/µs to 84.9 V/µs. To evaluate the effect of forced gas flow on current interruption performance, three different test arrangements are investigated: a simple contact configuration with a free-burning arc, a contact and a cylindrical nozzle setup (tube-constricted arc), and finally a self-blast arrangement where the arc is cooled by a gas flow near current zero. In each arrangement, three different filling pressures are mainly studied: 1, 20, and 40 bar, the latter being in the supercritical region. In all cases, the interelectrode gap is fixed at 50 mm. It is observed that the interruption performance deteriorates with increased filling pressure in the absence of forced gas flow. A higher post-arc current is observed for the arcs burning at high filling pressures (i.e. 20 and 40 bar) compared to at atmospheric pressure in cases with no or little forced cooling. On the other hand, a forced gas flow near the current zero reduces the post-arc current and improves the interruption performance also at high filling pressures. Little effect of the supercritical state on the interruption performance of nitrogen is observed. Under the above-mentioned test conditions, the majority of the failures at high filling pressure are observed to be of thermal re-ignition type.

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3