Abstract
Abstract
Graphene inherently possesses defect sites and grain boundaries that are vulnerable to chemical etching by hydrogen radicals. In this study, an etch-mitigation method is presented to selectively passivate these sites using atomic layer deposition (ALD) of a H etch-resistant material. First, as a reference experiment, pristine exfoliated graphitic layers are exposed to H radicals to determine the lateral etch rate from defect sites. Next, these samples are compared to graphitic layers in which the defects are selectively passivated by Al2O3, in the same exposure conditions, using atomic force microscopy at every step in the experiment. The results show that etching is slowed down by local deposition of Al2O3 ALD at sites vulnerable to H radical etching.
Funder
Netherlands Organization for Scientific Research
Subject
Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献