Abstract
Abstract
Low-temperature Raman scattering is used to study the crystal structure of molecular-beam epitaxially grown layers of the Dirac semimetal Cd3As2 and its related alloy (Cd1-x
Zn
x
)3As2. The combination of narrow-linewidth spectra, multiple growth directions and full polarization analysis allows improved accuracy in identifying the irreducible representation of over 57 Raman-active vibrations. Several disagreements with previous identifications are found. Structurally, the results agree with the centrosymmetric I41/acd space group of bulk-grown Cd3As2 and are clearly distinct from the Raman spectra of nanoscale platelets and wires. Three-fold twinning is seen in (112) Cd3As2 grown on (111) zincblende substrates corresponding to the three possible tetragonal orientations. In dilute (Cd1-x
Zn
x
)3As2, phonons have a frequency and scattering amplitude dependence on Zn concentration that is continuous with Cd3As2 but at least one frequency is absent at the alloy endpoint, preventing a simple one-mode description of the alloy phonon.
Funder
Department of Energy, Basic Energy Sciences
Subject
Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials