Tunable layered composites based on magnetoactive elastomers and piezopolymer for sensors and energy harvesting devices

Author:

Makarova L AORCID,Alekhina Yu A,Isaev D A,Khairullin M F,Perov N S

Abstract

Abstract The novel layered structures comprising piezoelectric polymer and magnetoactive elastomer (MAE) were developed and investigated. The influence of iron particles content in the elastomeric layer, its thickness and Young’s modulus of silicone on the multiferroic properties of the structures were analyzed. The investigation included the experimental and numerical characterization of the magnetoelectric effect. The giant values of bending deformations of MAEs in the external gradient magnetic field led to giant values of induced voltage (up to nearly 650 mV) in the composite. The displacement of ferromagnetic particles inside the elastomeric matrix under gradient magnetic field became the main basis for numerical modelling. The molecular dynamic method, ‘virtual springs’ method and Verlet algorithm were used to obtain the results of the numerical experiment. The energy transformation and magnetic field response in the novel composite allow it to be used in sensors and energy-harvesting devices.

Funder

Russian Foundation for Basic Research

President of the Russian Federation Grant

5 top 100 Russian Academic Excellence Project at the Immanuel Kant Baltic Federal University

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3