Abstract
Abstract
Two-dimensional (2D) materials exhibit a high strength and flexibility along with unique electrical–mechanical multiphysics properties. In this study, we experimentally demonstrated the electromechanical response of a multilayer 2D material, 2H-phase MoS2, by using a piezoresponse force microscope. In particular, the dominant physical quantity of the deformation response was determined by independently controlling the electric field and electric field gradient by changing the probe shape and material thickness (number of layers). The multilayer MoS2 exhibited an out-of-plane electrical–mechanical deformation response that followed and was inverted with respect to positive and negative voltages, respectively. Moreover, the relationships between the electric field gradient and strain were similar for all shapes of the probe tip and film thickness values. This result indicated that the electrical–mechanical response of this material was dominated by the electric field gradient, and the strain could be attributed to the converse flexoelectric effect. The findings can provide guidance for the realization of ultrathin electromechanical devices.
Funder
Japan Society for the Promotion of Science
Subject
Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献