Abstract
Abstract
The aims of this study encompass the characterization of process parameters and the antimicrobial potential during operation of a novel non-thermal plasma (NTP) source in a duct system containing a particulate matter (PM) filter thus mimicking the interior of an air purifier. Simulating conditions of a long-term operation scenario, in which bacterial aerosols in indoor environments accumulate on PM filters, the filter surfaces were artificially inoculated with Escherichia coli (E. coli) and exposed to an air stream enriched with reactive species. Electrical power consumption, key plasma parameters, volume flow and air flow velocity, reactive gas species concentrations as well as inactivation rates of E. coli were assessed. The NTP operated at a gas temperature close to ambient air temperature and featured a mean electron energy of 9.4 eV and an electron density of 1∙1019 m−3. Ozone was found to be the dominating reactive gas species with concentrations of approx. 10 ppm in close vicinity to the PM filters. An inactivation rate of 99.96 % could be observed after exposure of the PM filters to the gas stream for 15 min. This inactivation efficiency appears very competitive in combating realistic bacterial aerosol concentrations in indoor environments.
Funder
German Federal Ministry of Education and Research
European Innovation Partnership
European Regional Development Fund
Ministry of Science and Culture of Lower Saxony
Deutsche Forschungsgemeinschaft
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献