Characteristics of high-repetition-rate bipolar pulse DBD under various electrical conditions in atmospheric-pressure air

Author:

Kim Seong-HunORCID,Yun Ung-HuiORCID,Kim Jin-GyuORCID

Abstract

Abstract Numerous studies have been conducted on pulse dielectric barrier discharge (DBD) because it can produce powerful discharges uniformly at atmospheric pressure with a fast rise time. Although much research has been conducted on pulse DBD below 10 kHz, relatively little has been conducted on pulse DBD at high pulse repetition rates (PRRs). Therefore, in this study, the ozone generation and discharge characteristics of bipolar pulse DBD in atmospheric-pressure air at a high PRR of 10 kHz or above were investigated. According to the results of this study, with the exception of electron temperature, most discharge characteristics need for practical applications—like transfer charge, electron density, and discharge uniformity—improved as the voltage and duty ratio increased at high PRR. On the contrary, increasing the PRR exhibited trade-off features like low electron temperature, low discharge uniformity, and a high number of discharges per unit time. Ozone generation demonstrated good results at high voltage, appropriate PRR, and low duty ratio, but applying suitable electrical conditions is crucial considering ozone generation speed and power consumption. The findings of this study will be very beneficial for high-PRR pulse DBD applications that require quick and effective processing. Additionally, they will be useful for researching the characteristics of pulse DBD at high PRR.

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3