Electrically-driven IMT and volatile memristor behavior in NdNiO3 films

Author:

Schneble O DORCID,Leahy I AORCID,Zimmerman J DORCID,Tellekamp M BORCID

Abstract

Abstract Transition metal oxides with insulator-metal transitions (IMTs) are uniquely suited for volatile memristor devices that mimic the spiking of biological neurons. Unlike most non-volatile memristors, which often operate via ion migration into filaments, volatile devices utilize a reversible phase change that returns to a ground state in the absence of applied stimulus. In these devices, Joule heating triggers the IMT and changes the bulk resistivity rather than influencing conduction through defects, as in previous studies. This volatile resistive switching behavior has previous been leveraged in niobium and vanadium oxides, but not in rare-earth nickelates, despite their tunable transition temperatures. This study demonstrates an electrically driven IMT in the prototypical rare-earth nickelate, NdNiO3, in large area devices. While previous work examining the electrically-driven IMT in NdNiO3 suggests defect-dominated conduction, this study shows clear s-type negative differential resistance (NDR) consistent with temperature-dependent resistivity measurements. The NDR peak-to-valley voltage scales linearly with temperature as expected for conductivity pathways dominated by bulk IMT behavior. Unlike other transition metal oxides, which are modeled using the insulator-metal phase fraction as the internal state variable, a thermoelectric model with temperature as the internal state variable is found to more accurately describe the current–voltage characteristic of NdNiO3 volatile memristors. Overall, we report the synthesis, fabrication, and characterization of NdNiO3 volatile memristors with resistivity dominated by bulk-like IMT behavior which is scalable and not dependent upon oxygen vacancy migration or defect mediated conduction pathways.

Funder

National Renewable Energy Laboratory

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3