A review of Ga2O3 deep-ultraviolet metal–semiconductor Schottky photodiodes

Author:

Liu ZengORCID,Tang Weihua

Abstract

Abstract Deep-ultraviolet (DUV) photodetectors are fundamental building blocks in many solid-state DUV optoelectronics, and their success relies on continuous innovations in semiconductor materials and the physics of device structures. Overcoming the technological obstacles in narrow-bandgap silicon-based optoelectronics (photodetectors and photonics), the wide-bandgap semiconductor attracted much attention when used in a DUV photodetector, among which gallium oxide is a typical representative material benefiting from its promising physical and chemical properties in nature, especially for its energy bandgap around 4.5–5.2 eV for its five phases (α, β, γ, ϵ, and δ). It responds to DUV light irradiation without the need to adjust the component in compounds and/or add external optical instruments, as with some compound semiconductors (Al x Ga1−x N, Mg x Zn1−x O, etc.) According to literature reports on Ga2O3-based photodetectors, the device morphology includes a metal–semiconductor–metal photodetector, homojunction or heterojunction photodetector, phototransistor, and Schottky photodiode. Notably, the Schottky photodiode with a rectified Schottky junction has the advantages of easy fabrication, fast photoresponse, less high-temperature diffusion, low dark current, high detectivity, and self-powered operation; however, its weaknesses include its thin depletion layer and low barrier at the metal–semiconductor interface. Therefore, in this concise literature review article, the recent progress of Ga2O3-based Schottky photodiodes is discussed in order to show some suggestions on the choice of Schottky metal, interfacial barrier modulation, space electric field adjustment, energy band engineering, and photodetection performance improvement, with the aim of promoting the further development of DUV photodetection in the near future.

Funder

National Natural Science Foundation of China

Open Fund of Key Laboratory of Aerospace Information Materials and Physics (NUAA) MIIT

National Key R&D Program of China

Natural Science Research Startup Foundation of Recuring Talents of Nanjing University of Posts and Telecommunications

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3