A first-principles study of the electronic, vibrational, and optical properties of planar SiC quantum dots

Author:

Jindal Rupali,Roondhe Vaishali,Shukla AlokORCID

Abstract

Abstract With the reported synthesis of a fully planar 2D silicon carbide (SiC) allotrope, the possibilities of its technological applications are enormous. Recently, several authors have computationally studied the structures and electronic properties of a variety of novel infinite periodic SiC monolayers, in addition to the honeycomb one. In this work, we perform a systematic first-principles investigation of the geometry, electronic structure, vibrational, and optical absorption spectra of several finite, but, fully planar structures of SiC, i.e. 0D quantum dots (QDs). The sizes of the studied structures are in the 1.20–2.28 nm range, with their computed HOMO(H)-LUMO(L) gaps ranging from 0.66 eV to 4.09 eV, i.e. from the IR to the UV region of the spectrum. The H-L gaps in the SiC QDs are larger as compared to the band gaps of the corresponding monolayers, confirming the quantum confinement effects. In spite of covalent bonding in the QDs, Mulliken charge analysis reveals that Si atoms exhibit positive charges, whereas the C atoms acquire negative charges, due to the different electron affinities of the two atoms. Furthermore, a strong structure property relationship is observed with fingerprints both in the vibrational and optical spectra. The wide range of H-L gaps in different SiC QDs makes them well-suited for applications in fields such as photocatalysis, light-emitting diodes, and solar cells.

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3