In situ ambient pressure XPS study of Pt/Cu(111) single-atom alloy in catalytically relevant reaction conditions

Author:

Simonovis Juan Pablo,Hunt Adrian,Waluyo IradwikanariORCID

Abstract

Abstract The presence of multiple reactant gases as well as reaction intermediates in a heterogeneous catalytic reaction results in a complex interaction between different components of the catalyst with each gas, which can alter the surface and chemical state of the catalyst differently than in the presence of an individual gas alone. In this study, we used in situ ambient pressure x-ray photoelectron spectroscopy to study the surface state of Pt/Cu(111) single-atom alloy model system in two catalytically relevant reaction conditions: CO2 hydrogenation and CO oxidation. We found that the activation of CO2 results in the formation of CO, which adsorbs on Pt sites at up to 400 K. In the presence of CO2 and H2, Pt catalyzes the reverse water–gas shift reaction, which produces more CO and further stabilizes surface Pt atoms at 450 K. On the other hand, in CO oxidation condition, the presence of O2 results in the formation of a thick Cu2O layer at higher temperatures, and Pt atoms are no longer detected in the surface and subsurface layers. When O2 is introduced to the sample before CO, the formation of a complete Cu2O layer that covers all Pt atoms occurs immediately at room temperature. However, when CO is introduced at room temperature before O2, the presence of adsorbed CO on Pt sites stabilizes the surface Pt atoms and prevents the formation of a complete Cu2O layer, thus exposing the Pt atoms in ‘holes’ in the Cu2O layer.

Funder

Basic Energy Sciences

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3