Abstract
Abstract
With chemical stability under high temperatures, dielectric materials can be idealized thermal emitters for different energy applications. However, dielectric materials do not support surface waves at near-infrared ranges for longer-distance thermal photon tunneling, which limits their applications in near-field thermal radiation. It is demonstrated in this study that thermal field amplification at near-infrared wavelengths at dielectric surfaces could be achieved through asymmetric Fabry–Perot resonance with anti-reflection coatings or 1D photonic crystal type structures. ⩾100 nm near-infrared thermal photon tunneling can be achieved when these thin film structures are added to the emitter and the collector surfaces. Among these two thin film structures, 1D photonic crystal type periodic structures constructed with the same high refractive index material as the emitter/collector material allow near-field thermal photon tunneling at large parallel wavenumbers. Moreover, the field amplification can be increased by adding more 1D photonic crystal layers to achieve even longer distances near field thermal photon tunneling.
Funder
National Science Foundation
CBET
Subject
Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献