Influence of ZnO nanorod surface chemistry on passivation effect of TiO2 shell coating

Author:

Li Xuan,Tu Ying,Pace Simona,Anselmi-Tamburini UmbertoORCID,Briscoe JoeORCID

Abstract

Abstract Core–shell structures with ZnO cores have been widely investigated due to their effectiveness in suppressing surface defects of ZnO nanostructures. As the surface defects are hugely dependent on the synthesis conditions, it is important to understand the interactions between shell material and ZnO with different surface chemistry. Here we produce well-aligned ZnO nanorods using two growth methods, leading to ZnO with different surface chemistries. A thin layer of TiO2 shell is applied via layer-by-layer adsorption method. The core–shell structure is confirmed via high-resolution transmission electron microscopy. The optical properties and chemical states of both bare nanorods and core–shell structures are investigated and compared using photoluminescence (PL) measurement and x-ray photoelectron spectroscopy (XPS). Both PL and XPS results suggest surface defects are passivated by TiO2 shell coating. The shell coating has a stronger effect on ZnO synthesized in OH rich environment, due to excessive hydroxyl groups provided during synthesis, which remain even after annealing-induced crystallization.

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3