Flexible force sensitive frequency reconfigurable antenna base on stretchable conductive fabric

Author:

Shao Li,Tang Xinyue,Yang Yujie,Wei DachengORCID,Lin Yuanchang,He Guotian,Wei DapengORCID

Abstract

Abstract With the development of wireless technology and flexible electronics, flexible frequency reconfigurable antennas have been directly used as sensors to detect mechanical signals. As an important frequency reconfigurable antenna, microstrip antenna has been widely studied in the field of flexible and flexible electronics in recent years. However, the stretchability of microstrip antennas usually comes at the cost of reducing the conductivity of the radiated conductor. Here, we report a flexible force sensitive frequency reconfigurable microstrip antenna, which fabricated by silver fiber conductive fabric with a double-wire braided structure. In order to increase the detection of pressure, an elastic dielectric layer with a microhemispheric array was introduced into the microstrip antenna to extend the frequency band width of the reconfigurable antenna. The relative frequency of the antenna varied from 0% to −12.9%, and the sensing sensitivity was −1.9 kPa−1. As potential applications, we demonstrate the use of a flexible frequency reconfigurable antenna base on stretchable conductive fabric as a strain sensor capable of measuring bending angle and movements of a human finger. The change in the resonance frequency with the externally applied tensile strain in this antenna design has a sensitivity of 3.448, manifesting a 4.19- and a 13.79-fold increase of sensitivity when compared to those in previous reports that used arched or both-planes serpentine rectangular microstrip antenna. This is of great significance for the application of wearable antenna in wireless mechanical sensing technology.

Funder

Chongqing Entrepreneurship and Innovation Support Program for Overseas Students

Chongqing Key Laboratory of Artificial Intelligence and Service Robot Control Technology

Chongqing Bayu Scholar Program

Project of Chongqing Science and Technology B-ureau

Project of Bebei Science and Technology B-ureau

Chongqing Talents Program

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3