Ammonia cracking for hydrogen production using a microwave argon plasma jet

Author:

Zhang XinhuaORCID,Cha Min SukORCID

Abstract

Abstract Ammonia (NH3) is a promising hydrogen carrier that effectively connects producers of blue hydrogen with consumers, giving rapid conversion of ammonia to hydrogen a critical role in utilizing hydrogen at the endpoints of application in an ammonia-hydrogen economy. Because conventional thermal cracking of NH3 is an energy intensive process, requiring a relatively longer cold start duration, plasma technology is being considered as an assisting tool—or an alternative. Here we detail how an NH3 cracking process, using a microwave plasma jet (MWPJ) under atmospheric pressure, was governed by thermal decomposition reactions. We found that a delivered MW energy density (ED) captured the conversion of NH3 well, showing a full conversion for ED > 6 kJ l−1 with 0.5-% v/v NH3 in an argon flow. The hydrogen production rate displayed a linear increase with MW power and the NH3 content, being almost independent of a total flow rate. A simplified one-dimensional numerical model, adopting a thermal NH3 decomposition mechanism, predicted the experimental data well, indicating the importance of thermal decomposition in the plasma chemistry. We believe that such a prompt thermal reaction, caused by MW plasma, will facilitate a mobile and/or non-steady application. A process combined with the conventional catalytic method should also effectively solve a cold start issue.

Funder

King Abdullah University of Science and Technology

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3