Size-tunable silver nanoparticle synthesis in glycerol driven by a low-pressure nonthermal plasma

Author:

Xu ChiORCID,Andaraarachchi Himashi P,Xiong ZichangORCID,Eslamisaray Mohammad Ali,Kushner Mark JORCID,Kortshagen Uwe RORCID

Abstract

Abstract Silver nanoparticles (NPs) are extensively used in electronic components, chemical sensors, and disinfection applications, in which many of their properties depend on particle size. However, control over silver NP size and morphology still remains a challenge for many synthesis techniques. In this work, we demonstrate the surfactant-free synthesis of silver NPs using a low-pressure inductively coupled nonthermal argon plasma. Continuously forming droplets of silver nitrate (AgNO3) precursor dissolved in glycerol are exposed to the plasma, with the droplet residence time being determined by the precursor flow rate. Glycerol has rarely been studied in plasma-liquid interactions but shows favorable properties for controlled NP synthesis at low pressure. We show that the droplet residence time and plasma power have strong influence on NP properties, and that improved size control and particle monodispersity can be achieved by pulsed power operation. Silver NPs had mean diameters of 20 nm with geometric standard deviations of 1.6 under continuous wave operation, which decreased to 6 nm mean and 1.3 geometric standard deviation for pulsed power operation at 100 Hz and 20% duty cycle. We propose that solvated electrons from the plasma and vacuum ultraviolet (VUV) radiation induced electrons produced in glycerol are the main reducing agents of Ag+, the precursor for NPs, while no significant change of chemical composition of the glycerol solvent was detected.

Funder

National Science Foundation

the Department of Defense, The Army Research Office

the U. S. Department of Energy, Office of Science, Office of Fusion Energy Sciences

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3