The negative fixed charge of atomic layer deposited aluminium oxide—a two-dimensional SiO2/AlO x interface effect

Author:

Hiller DanielORCID,Tröger David,Grube Matthias,König DirkORCID,Mikolajick Thomas

Abstract

Abstract The origin of the commonly observed negative fixed charge density (Q fix) in atomic layer deposited (ALD-)aluminium oxide is still a matter of debate despite its widespread applications in (opto-)electronics, particularly in silicon photovoltaics. Q fix plays a crucial role for excellent Si surface passivation, which is mandatory for high efficiency solar cells. Often, Q fix is believed to originate from structural or compositional specifics of the first few nanometres of ALD-AlO x adjacent to the Si-interface. Here, we demonstrate that the negative Q fix is solely an interfacial effect of ALD-AlO x and the SiO2 ultra-thin film that grows inevitably during ALD on Si. Furthermore, it is proven that a second Q fix-layer exists at the upper AlO x /SiO2 interface of SiO2/AlO x /SiO2-stacks, which can carry up to a quarter of the total Q fix. We show that both SiO2/AlO x interfaces can be separated by a charge-lean material such as HfO2 (rather than AlO x ) without significant impact on the measured Q fix. This renders the location of Q fix exactly at the two-dimensional interface of SiO2 and AlO x , rather than in the near-interfacial AlO x volume. The origin of Q fix is discussed in detail. The possibility to obtain very high charge densities of around −5 × 1012 cm−2 by sub-nm thick ALD-AlO x enables advanced applications such as passivating hole-selective contacts for Si solar cells or nanoelectronic Si-doping strategies via Al-induced SiO2 modulation doping.

Funder

Freistaat Sachsen

Alexander von Humboldt-Stiftung

Australian Centre for Advanced Photovoltaics

Bundesministerium für Bildung und Forschung

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3