High quality factor, protein-based microlasers from self-assembled microcracks

Author:

Nguyen Tam TrongORCID,Mai Hanh HongORCID,Pham Thin Van,Nguyen Thau Xuan,Ta Van DuongORCID

Abstract

Abstract In the last decade, microlasers with biological origin have shown their great potential in biosensing and bioimaging. Several micro-structures have been developed for high quality (Q) factor biolasers including Fabry–Pérot, distributed feedback and whispering gallery mode cavities. However, the fabrication of these lasers is generally complicated and their operation is strongly affected by cavity defects. In this work, we demonstrate random protein-based microlasers fabricated by a simple one-step self-assembled method. The lasing can be achieved from microcracks with random structures. The lasing threshold is around 14 mJ cm−2 and the quality factor of lasing modes can be up to 3 × 10 3 which are comparable with other conventional biolasers. Our work opens a new possibility for the fabrication of high Q factor microlasers from biocompatible materials, with great potential for biosensing and biomedical applications.

Funder

Vietnam National Foundation for Science and Technology Development

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3