Study of a deep learning-based method for improving the spectral resolution of the spectral scanning hyperspectral imaging system via synthetic spectral image data

Author:

Kim Suhyun,Jung Sera,Yoon JongheeORCID

Abstract

Abstract Hyperspectral imaging (HSI) techniques, measuring spatial and spectral information, have shown the ability to identify targets based on their spectral features. Among many HSI methods, a spectral scanning HSI method implemented using a tunable filter has been widely used in various applications due to wide-area HSI capability and cost-effectiveness. However, the limitation of the spectral scanning method is poor spectral resolution compared to other spectral imaging methods using dispersive materials. To overcome this limitation, we exploited a recently developed deep-learning model that retrieves multispectral information from an red, green, and blue image. Moreover, this study proposed that a color chart consisting of 18 colors could be a standard target for training the deep-learning model under various spectral scanning HSI conditions. The simulation work was performed to demonstrate the feasibility of the proposed method using synthetic hyperspectral images. Realistic synthetic data was prepared using spectral data obtained via a spectrometer (ground-truth data) and artificial filters emulating a liquid-crystal tunable filter. We found that the deep-learning model trained via a supervised learning approach using synthetic hyperspectral images successfully retrieved high-resolution spectral data. In addition, the trained deep-learning model retrieved robust spectral profiles of random colors which were not used in the training process. Collectively, the deep learning-based spectral scanning method could improve the spectral resolution of the imaging system, and the color chart would be a good and practical standard training target for the deep learning model.

Funder

Ajou University

National Research Foundation

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3