Selective thermal emitters for high-performance all-day radiative cooling

Author:

Chowdhary Ashish KumarORCID,Reddy Veluri Anurag,Sikdar Debabrata

Abstract

Abstract Passive radiative coolers (PRCs), which pump excess heat to cold exterior space via thermal radiation, have emerged as a promising energy-free technology in cooling buildings, thermal power plants, and photovoltaics. However, designing a ‘daytime’ PRC is challenging due to the simultaneous requirement of high reflectance in the solar spectral regime (0.3–2.5 µm) and high emissivity in the atmospheric transmittance window (8–13 µm). Here, we present a large-area compatible and lithography-free nanoscale multilayer design of daytime PRC based on two pairs of tandem silicon dioxide–aluminium nitride dielectric layer cascaded to a silver ground metal placed over a silicon substrate. We theoretically achieve near-perfect reflectance (97.3%) over the solar spectral regime while maintaining high emissivity (80%) in the atmospheric transmittance window. During the daytime under direct sunlight, the cooling power of the proposed structure is reported to be 115 W m 2 with a temperature reduction up to 15 K below the ambient temperature, when the effect of convection and conductive heat transfer is considered. Our design is polarization-independent and angle-insensitive up to 70 degrees of angle of incidence. An excellent match between our theoretical and simulation results validates our findings. The fabrication tolerance study reveals that the cooling performance of our robust design is unlikely to degrade much during experimental realization. The figure of merit calculation indicates that our PRC can outperform recently reported daytime PRCs.

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3