Abstract
Abstract
The conductance through a quantum dot (QD) between a source and a drain electrode is usually controlled electrostatically by a nearby gate electrode. A periodic modulation of the conductance versus gate voltage is observed, swapping between Coulomb blockade and single-electron tunneling. By controlling the Fermi level of a third (‘base’) lead attached to the QD, we were able to switch a single-electron current from source to drain, exceeding the single-electron current to or from the base lead. A simple model is presented revealing the role of ground- and excited states within the QD for this dynamic operation of a single-electron transistor.
Funder
Deutsche Forschungsgemeinschaft
Bundesministerium für Bildung und Forschung
Subject
Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献