Wide range of droplet jetting angles by thin-film based surface acoustic waves

Author:

Li JieORCID,Biroun Mehdi HORCID,Tao Ran,Wang YongORCID,Torun HamdiORCID,Xu Na,Rahmati MohammadORCID,Li YifanORCID,Gibson DesmondORCID,Fu Chen,Luo JingtingORCID,Dong Linxi,Xie JinORCID,Fu YongqingORCID

Abstract

Abstract Nozzleless jetting of droplets with different jetting angles is a crucial requirement for 2D and 3D printing/bioprinting applications, and Rayleigh mode surface acoustic waves (SAWs) could be a potential technique for achieving this purpose. Currently, it is critical to vary the jetting angles of liquid droplets induced by SAWs and control the liquid jet directions. Generally, the direction of the liquid jet induced by SAWs generated from a bulk piezoelectric substrate such as LiNbO3 is along the theoretical Rayleigh angle of ∼22°. In this study, we designed and manufactured thin-film SAW devices by depositing ZnO films on different substrates (including silicon and aluminium) to realize a wide range of jetting angles from ∼16° to 55° using propagating waves generated from one interdigital transducer. We then systematically investigated different factors affecting the jetting angles, including liquid properties, applied SAW power and SAW device resonant frequency. Finally, we proposed various methods using thin-film SAW devices together with different transducer designs for realizing a wide range of jetting angles within the 3D domain. A nozzleless jetting method is proposed using thin-film based surface acoustic wave devices to achieve a wide range of jetting angles for droplets.

Funder

Research and Development Program of China

UK Fluidic Network

Engineering Physics and Science Research Council of UK

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation of China

Shenzhen Key Lab Fund

Shenzhen Science & Technology Project

Newton Mobility Grant

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3