Parameterized reinforcement learning for optical system optimization

Author:

Wankerl HeribertORCID,Stern Maike LORCID,Mahdavi Ali,Eichler Christoph,Lang Elmar WORCID

Abstract

Abstract Engineering a physical system to feature designated characteristics states an inverse design problem, which is often determined by several discrete and continuous parameters. If such a system must feature a particular behavior, the mentioned combination of both, discrete and continuous, parameters results in a challenging optimization problem that requires an extensive search for an optimal system design. However, if the corresponding inverse design problem can be reformulated as a parameterized Markov decision process, reinforcement learning (RL) provides a heuristic framework to solve it. In this work, we use multi-layer thin films as an example of the aforementioned optimization problems and consider three design parameters: Each of the thin film layer’s dielectric material (discrete) and thickness (continuous), as well as the total number of layers (discrete). While recent methods merely determine the optimal thicknesses and—less commonly—the layers’ materials, our approach optimizes the total number of stacked layers as well. In summary, we further develop a Q-learning variant to solve inverse design optimization and thereby outperform human experts and current approaches like needle-point optimization or naive RL. For this purpose, we propose an exponentially transformed reward signal that eases policy search and enables constrained optimization. Moreover, the learned Q-values contain information about the optical properties of multi-layer thin films, which allows us a physical interpretation or what-if analysis and thus enables explainability.

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3