Numerical simulation of electric field-induced phase transition evolution and boiling characteristics in the evaporative cooling medium C6F12O

Author:

Tian Shuangshuang,Wang JiahaoORCID,Wu Yingyu,Hu Feng,Luo Yongchao,Zhang Chaohai,Gao ShenORCID,Yuan Zian

Abstract

Abstract Phase change cooling technology offers high cooling efficiency, safety, and reliability, representing a novel approach to achieving efficient heat dissipation for high-power and large-capacity electrical equipment. The formulation of the cooling medium is pivotal to phase change cooling technology. However, current media exhibit compatibility, stability, economy, and environmental friendliness deficiencies. Consideration could be given to implementing the C6F12O medium due to its superior overall performance and ability to meet the latent heat requirements in phase change cooling equipment. This paper employs a numerical simulation approach that combines the phase field method based on the Cahn-Hilliard equation with the theory of electrohydrodynamics. It investigates the impact of temperature, electric field intensity, and electric field direction on the evolution of bubble motion and the boiling state of the C6F12O medium, considering the interaction of electric-fluid-heat-phase fields. Numerical results indicate that the system undergoes initial nucleate boiling, nucleate boiling, and film boiling stages at T = 330–335 K, T = 335–350 K, and T ⩾ 355 K, respectively. The introduction of an appropriate electric field can enhance the motion evolution of C6F12O bubbles. However, attention must be paid to the formation of bubble channels under high field strength to prevent potential decreases in insulation performance. An inhomogeneous electric field in the vertical direction proves more effective in improving the bubble release rate compared to a uniform electric field. To some extent, an inhomogeneous electric field in the horizontal direction can prevent the mass accumulation of bubbles in regions of high field intensity. This research has the potential to offer theoretical guidance for the engineering application of the C6F12O phase change cooling medium.

Funder

Natural Science Foundation of Hubei Province

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3