Influence of discharge polarity on streamer breakdown criterion of ambient air in a non-uniform electric field

Author:

Iqbal Asif,Wozniak Daniel,Rahman Md Ziaur,Banerjee Sneha,Verboncoeur John,Zhang PengORCID,Jiang ChunqiORCID

Abstract

Abstract Streamer breakdown of atmospheric air with non-uniform dc electric field in a needle-to-plate electrode configuration is studied using a semi-analytic model and experimental measurements. A high voltage (either positive or negative) is applied to a hollow needle with 0.51 mm outer diameter and 0.25 mm inner diameter separated from a planar ground electrode by a gap distance of 0.1–1.4 cm. Breakdown voltages are recorded for both positive and negative discharge polarities. Empirical relations between the critical avalanche size for streamer breakdown and the gap distance are proposed. Using these empirical relations, a semi-analytic model based on Meek’s criterion for streamer breakdown is developed to accurately predict the measured breakdown voltages. It is found that for 380{\text{ Torr }}\;{\text{cm}}$?> p d > 380  Torr  cm (or d $?> > 0.5 cm at one atmosphere) streamer breakdown of ambient air occurs at a lower applied voltage for a positively biased needle compared to that with a negatively biased needle, referred as the polarity effect. For p d < 380  Torr  cm breakdown is attained at a lower applied voltage with a negatively biased needle compared to that with a positively biased needle, and breakdown mode transits from the polarity effect to the so called inverted polarity effect.

Funder

Air Force Office of Scientific Research

NSF - DOE

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3