Influence of Al x Ga1−x N nucleation layers on MOVPE-grown zincblende GaN epilayers on 3C-SiC/Si(001)

Author:

Gundimeda AbhiramORCID,Rostami Mohammadreza,Frentrup Martin,Hinz Alexander,Kappers Menno J,Wallis David J,Oliver Rachel A

Abstract

Abstract The suitability of Al x Ga1−x N nucleation layers (NLs) with varying Al fraction x for the metal organic vapour phase epitaxy of zincblende GaN on (001) 3C-SiC was investigated, using x-ray photoelectron spectroscopy, atomic force microscopy, and x-ray diffraction. The as-grown NLs exhibited elongated island structures on their surface, which reduce laterally into smaller, more equiaxed islands with increasing AlN composition. During high-temperature annealing in a mixture of NH3 and H2 the nucleation islands with low Al fraction ripened and increased in size, whereas this effect was less pronounced in samples with higher Al fraction. The compressive biaxial in-plane strain of the NLs increases with increasing AlN composition up to x = 0.29. GaN epilayers grown over NLs that have low Al fraction have high cubic zincblende phase purity and are slightly compressively strained relative to 3C-SiC. However, those samples with a measured Al fraction in the NL higher than 0.29 were predominantly of the hexagonal wurtzite phase, due to formation of wurtzite inclusions on various {111} facets of zb-GaN, thus indicating the optimal Al composition for phase-pure zb-GaN epilayer growth.

Funder

Engineering and Physical Sciences Research Council

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3