Renewable waste biomass-derived carbon materials for energy storage

Author:

Huang Yuancheng,Tang Zheng,Zhou Siyu,Wang Hong,Tang YougenORCID,Sun Dan,Wang HaiyanORCID

Abstract

Abstract It is crucial to develop high-performance electrode materials for the increasing energy demands of various energy storage systems. Biomass-derived carbons demonstrate great potential due to their rich structure, low cost, abundance in reserves, and excellent electrochemical performance. So far, various carbon structures ranging from highly disordered non-graphitic carbon to locally ordered graphite-like carbon have been achieved from different biomass. And they are employed as electrodes for different energy storage systems. However, to our best knowledge, there is no systematic review to show the latest progress in this area. Herein, we have systematically classified the waste biomass and discussed the microstructures of their derived carbons. In particular, as electrode materials, the effects of biomass-derived carbons’ structure, porosity, interlayer spacing, and heteroatomic doping on different energy storage devices are analyzed in detail. Furthermore, the challenges, as well as the corresponding solutions and developing trends to biomass-derived carbons, have been summarized.

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3