Composite magnetic 3D-printing filament fabrication protocol opens new perspectives in magnetic hyperthermia

Author:

Makridis AORCID,Okkalidis NORCID,Trygoniaris D,Kazeli KORCID,Angelakeris MORCID

Abstract

Abstract Three-dimensional (3D) printing technology has emerged as a promising tool for meticulously fabricated scaffolds with high precision and accuracy, resulting in intricately detailed biomimetic 3D structures. Producing magnetic scaffolds with the aid of additive processes, known as 3D printing, reveals multitude and state-of-the-art areas of application such as tissue engineering, bone repair and regeneration, drug delivery and magnetic hyperthermia. A crucial first step is the development of innovative polymeric composite magnetic materials. The current work presents a fabrication protocol of 3D printed polymer-bonded magnets using the Fused Deposition Modeling 3D printing method. Polymer-bonded magnets are defined as composites with permanent-magnet powder embedded in a polymer binder matrix. By using a low-cost mixing extruder, four (4) different filament types of 1.75 mm were fabricated using commercial magnetite magnetic nanoparticles mixed with a pure polylactic acid powder (PLA) and a ferromagnetic PLA (Iron particles included) filaments. The powder mixture of the basic filaments was compounded mixed with the nanoparticles (NPs), and extruded to fabricate the 3D printing filament, which is subsequently characterized structurally and magnetically before the printing process. Magnetic polymer scaffolds are finally printed using composite filaments of different concentration in magnetite. Our results demonstrate that the heating efficiency (expressed in W g−1) of the 3D printed magnetic polymer scaffolds (ranging from 2 to 5.5 W g−1 at magnetic field intensity of 30 mT and field frequency of 365 kHz) can be tuned by choosing either a magnetic or a non-magnetic filament mixed with an amount of magnetite NPs in different concentrations of 10 or 20 wt%. Our work opens up new perspectives for future research, such as the fabrication of complex structures with suitable ferromagnetic custom-made filaments adjusting the mixing of different filaments for the construction of scaffolds aimed at improving the accuracy of magnetic hyperthermia treatment.

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Reference55 articles.

1. Selective inductive heating of lymph nodes;Gilchrist;Ann. Surg.,1957

2. Magnetic nanoparticles: a multifunctional vehicle for modern theranostics;Angelakeris;Biochim. Biophys. Acta Gen. Subj.,2017

3. Magnetic nanoparticles for drug delivery;Arruebo;Nano Today,2007

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3