Towards room-temperature and above magnetoelectricity in CoFe2O4/Cr2O3 core/shell nanoparticles

Author:

Barik A,Sahoo M R,Ghosh R,Tiwary Sweta,Kuila S,Takhar D,Birajdar B,Vishwakarma P NORCID

Abstract

Abstract This work provides an effective approach to increase the magnetoelectric (ME) operating temperature of primordial sesqui oxide Cr2O3. The CoFe2O4 (core)/Cr2O3 (shell) nanoparticles with varying molar fractions are prepared via the sol-gel auto-combustion method. The phase-purity and coating induced micro-strains in core as well as shell have been validated from the Rietveld refinement of x-ray diffraction data, and are complementary to the Fourier transform infrared spectroscopy and Raman spectroscopy studies. Transmission electron microscopy measurement confirms the core/shell configuration of the nanoparticles. The magnetization measurements suggest screening of ferromagnetic interaction of CoFe2O4 (core) due to Cr2O3 shell over it, such that core/shell nanoparticles respond like single domain particles. A careful inspection of the impedance and modulus data suggest single relaxation in the studied frequency/temperature range for all the compositions. Both, the relaxation and the conduction processes are found to be polaronic obeying Mott variable range hopping mechanism. Direct ME measurements on these samples manifests the presence of linear magnetoelectricity for temperature as high as 400 K―a hallmark of enhancement in ME operating temperature of parental Cr2O3 phase and therefore widen its scope to meet the necessity of ME based potential applications.

Funder

Science and Engineering Research Board

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3