Enhanced production of hydroxyl radicals in plasma-treated water via a negative DC bias coupling

Author:

Lee SeungjunORCID,Lee JimoORCID,Nam WoojinORCID,Yun GunsuORCID

Abstract

Abstract Hydroxyl radical (OH•) plays an important role in advanced oxidation processes (AOPs), which are employed to decompose organic pollutants in wastewater treatment. OH• is predominantly produced in AOPs for wastewater treatment via ultraviolet photolysis of hydrogen peroxide (H2O2) or ozone, which is a costly and difficult process. This paper introduces an enhanced OH• production method based on microwave-driven atmospheric pressure plasma with negatively biased water. Fluorescence analysis using terephthalic acid and 2-hydroxyterephthalic acid showed that the OH• concentration in a DC coupled plasma-treated water (PTW) can be increased by 1–2 orders of magnitude compared to the case with microwave plasma only. In addition, we found that there exists an optimal concentration of H2O2 in PTW for the ideal production of OH•. As a test case of AOPs, an Fe(III)-ethylenediaminetetraacetic acid solution containing H2O2 was treated with a DC coupled plasma for 10 min, and more than 80% decomposition was recorded.

Funder

Ministry of Science, ICT and Future Planning

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3