High-throughput phase field simulation and machine learning for predicting the breakdown performance of all-organic composites

Author:

Liu Dong-DuanORCID,Li QiaoORCID,Zhu Yu-Jie,Jiang BingxuORCID,Zeng Tan,Yang Hongxiao,He Jin-LiangORCID,Li QiORCID,Yuan ChaoORCID

Abstract

Abstract All-organic dielectric polymers are materials of choice for modern power electronics and high-density energy storage, and their performance can be significantly improved by doping trace amounts of organic molecular semiconductors with strong electron-affinity energy to suppress charge conduction losses. Insight into the breakdown mechanism of polymers/organic molecular semiconductor composites is essential for the design of high-performance dielectric polymers. This study investigates the impact of the doping concentration of organic molecular semiconductors, dielectric constants, and trap depths on the breakdown performance of dielectric polymers under high temperature and electric fields. A modified phase-field model, incorporating deep traps and carriers’ coulomb capture radius, has been developed to facilitate high-throughput simulations of electrical breakdown in polymer/organic molecular semiconductor composites. This work accurately predicted the breakdown strength of all-organic composites using high-throughput phase-field simulation data as input for machine learning, which provides crucial theoretical support for designing all-organic composite dielectric polymers for energy storage capacitors under extreme conditions.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3