Investigation of the high-field transport, Joule-heating-driven conductivity improvement and low-field resistivity behaviour in lightly-reduced free-standing graphene oxide papers

Author:

Thamkrongart Krongtham,Ramamoorthy HariharaORCID,Buapan Kanokwan,Chiawchan Tinna,Somphonsane Ratchanok

Abstract

Abstract Free-standing reduced graphene oxide (rGO) has been gaining popularity for its use in supercapacitors and battery applications due its facile synthesis, multi-layered structure, and high-current carrying capacity. Pertinent to the successful implementation of such applications, however, is the need to develop a thorough understanding of the electrical properties of such materials when subject to high applied electric fields. In this work, we undertake a detailed study of high-field electrical properties of mm-scale, lightly-reduced, rGO papers. Our results reveal that the I–V curves exhibit substantial nonlinearity with associated hysteresis that depends strongly on the applied electric field. The nonlinear behaviour which was interpreted using conventional transport models of Fowler–Nordheim tunnelling and space charge limited conduction revealed that while these models provided good qualitative fits to our data, they were quantitatively lacking, thus leaving the issue of high-field transport mechanisms in rGO open for debate. Careful I–V cycling experiments with measurement time-delay introduced between cycles revealed that the observed hysteresis contained recoverable and non-recoverable parts that we identified as arising from charge trapping and Joule heating effects, respectively. Time-dependent measurements showed that these effects were characterized by two distinct time scales. Importantly, the Joule heating was found to cause a permanent conductivity improvement in the rGO via the ‘current annealing’ effect by effectively eliminating oxygenated groups from the rGO. The analysis of the electrical breakdown in our samples resembled a thermal runaway-like event that resulted in premature damage to the rGO. Finally, we investigated the low-field resistivity in the 80 K–300 K temperature range. The reduced activation energy analysis revealed a robust power law behaviour below 230 K, while deviating from this trend at higher temperatures. For samples that received current annealing treatment, a reduced value for the power law exponent was obtained, confirming the effective lowering of disordered regions.

Funder

Blue Sky Fundamental Fund

NSRF via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3