The impact of surface-to-volume ratio on the plasma activated water characteristics and its anticancer effect

Author:

Liu ZhijieORCID,Wang Sitao,Pang Bolun,Zhang Huaiyan,Gao Yuting,Xu Dehui,Kong Michael G

Abstract

Abstract Plasma activated water (PAW), as a green and potential technology, plays a significant role in bio-medicine applications. Surface-to-volume ratio of treated liquid during the preparation of PAW seriously affects the PAW chemistry characteristics, and ultimately results in different biological effects. However, that how does the surface-to-volume ratio affect PAW characteristics and anticancer effect induced by PAW is unclear. In this work, the surface-to-volume ratio is regulated to investigate the dynamic variation of chemical characteristics and cell apoptosis. Results display physicochemical properties including pH, ORP, and liquid temperature are varied with nonlinear trend besides conductivity. While the levels of RONS containing NO2 , NO3 , H+ are changed with linear trend except H2O2 ONOO and O . 2 . Furthermore, increasing surface-to-volume ratio could effectively accelerate cell apoptosis, enhance intracellular ROS concentration and strengthen anticancer effects. Thus, it is concluded that tuning surface to volume ratio can effectively enhance the reactive species flux into the liquid that leads to remarkable anticancer activity of PAW rather than the surface-to-volume ratio that is directly responsible for the enhanced impact on the cells. Additionally, the possible apoptosis mechanisms linked with RONS are also discussed. Clarifying the relationship between the surface-to-volume ratio and the PAW characteristics is beneficial to much insights into the chemistry nature of PAW and tailoring biological effect caused by PAW.

Funder

Natural Science Foundation of Shanxi Province

National Natural Science Foundation of China

State Key Laboratory of Electrical Insulation and Power Equipment

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3